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We investigate numerically the inverse participation ratios in a spin-1/2 XXZ chain, computed in the “Ising”
basis (i.e., eigenstates of σ z

i ). We consider in particular a quantity T , defined by summing the inverse participation
ratios of all the eigenstates in the zero-magnetization sector of a finite chain of length N , with open boundary
conditions. From a dynamical point of view, T is proportional to the stationary return probability to an initial
basis state, averaged over all the basis states (initial conditions). We find that T exhibits an exponential growth,
T ∼ exp(aN ), in the gapped phase of the model and a linear scaling, T ∼ N , in the gapless phase. These two
different behaviors are analyzed in terms of the distribution of the participation ratios of individual eigenstates.
We also investigate the effect of next-nearest-neighbor interactions, which break the integrability of the model.
Although the massive phase of the nonintegrable model also has T ∼ exp(aN ), in the gapless phase T appears
to saturate to a constant value.
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I. INTRODUCTION

In recent years there has been a renewed interest in the
dynamical properties of out-of-equilibrium isolated quantum
systems [1–3]. For instance, in a “quantum quench” setup,
the system is initially prepared in the ground state of some
Hamiltonian H0 and then evolved (unitarily) with a Hamilto-
nian H �= H0. A fruitful point of view is to consider a small
spatial region of a large system and to investigate the long-time
limit of observables defined in this subsystem. Some typical
questions one may then address are whether these expectation
values have well-defined long-time limits and if they are
described by some statistical ensemble (either thermal or not)
[4]. Such problems still represent an active subject of research.
Clearly, the steady states that may be reached crucially depend
on the structure of the eigenstates of H. In particular, it
has been shown that integrable systems generally fail to
reach thermal states [5]. Somewhat analogously, disordered
many-body systems in the “many-body localized phase” also
fail to “thermalize,” a phenomenon which has attracted a lot
of attention recently [6].

Following Ref. [7], we adopt here a different point of view
and consider how the system evolves as a whole, starting
from a set of simple states {|a〉} forming a “preferential”
basis for the model. In the case of a particle system on a
lattice, for instance, a natural choice for the preferential basis
is the set of product states where the particles have fixed
positions in real space. In a spin system (see below), one
may choose the spin configurations that are eigenstates of all
the Sz

i operators for some choice of the quantization axis z.
A quantity of interest is the typical time-average probability
to return to the initial basis state. As will be explained below,
these probabilities are related to the inverse participation ratios
(IPRs) of the eigenstates, computed in the preferential basis.
In the present study we explore numerically these quantities
in a particular many-body problem, the spin- 1

2 XXZ spin
chain. The preferential basis is chosen to be the set of “Ising
configurations” which are eigenstates of the z component
of the on-site magnetization. This spin-chain Hamiltonian
depends on an anisotropy parameter �. The main results of
the paper concern the scalings of these IPRs in the gapped

phase (|�| > 1) and in the gapless phase (|�| � 1) of the
model.

The plan of this paper is the following. Section II is a review
of isolated quantum systems, motivating the study of the IPR tn
of individual energy eigenstates and of their sum T . In Sec. III
we recall the definition of the XXZ spin chain and comment on
the question of degeneracies. We then present and discuss our
numerical results on various observables in the gapped phase
and in the gapless phase in the main section (Sec. IV). Section
V contains numerical results on a nonintegrable spin chain
with second-neighbor interactions, and we briefly discuss our
findings in Sec. VI.

II. GENERALITIES

We consider an isolated quantum system with a finite-
dimensional Hilbert space of dimension D. The eigenstates
of the Hamiltonian H are denoted by |n〉, and we assume for
simplicity that they are nondegenerate. In the preferential basis
{|a〉}, the IPR of an eigenstate is by definition

tn =
D∑

a=1

|〈a|n〉|4. (1)

The maximum value of this quantity is reached when the
eigenstate coincides with a single basis state. This is the
completely localized case and gives tmax = 1. On the other
hand, the minimum value of tn is reached for eigenstates which
are uniform superpositions of all the basis states, with the same
modulus |〈a|n〉| = 1/

√
D. This maximally delocalized limit

gives tmin = 1/D. These IPRs have been extensively used to
measure the localization properties of a single-particle wave
function [8,9] (for a review in the context of the Anderson
localization see, for instance, Ref. [10]). They have also
recently proved to be useful in the context of many-body
localization [11,12]. They can be used as well to extract some
universal long-distance properties from (clean) many-body
ground-state wave functions [13].
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Following Ref. [7] (see also [14]), we sum tn over all the
eigenstates to get

T =
∑

n

tn =
D∑

a,n=1

|〈a|n〉|4. (2)

This quantity measures how much the eigenstates are localized
in the preferential basis. It can range from Tmin = 1 (all the
eigenstates spread maximally over the whole basis) to Tmax =
D (each eigenstate matches exactly a single basis state). This
quantity was originally introduced [7] from a dynamical point
of view, as the trace of the matrix Q whose entries Qab are
the time-average probabilities to go from state |a〉 at the initial
time to state |b〉 at time t . If the system is prepared in state |a〉
at t = 0, the probability to observe it in state |b〉 at time t is
Pab(t) = |〈b|ψ(t)〉|2, i.e.,

Pab(t) =
∑
m,n

ei(En−Em)t 〈b|m〉〈m|a〉〈a|n〉〈n|b〉. (3)

In the absence of degeneracies in the spectrum, the time-
average probability reads

Qab = lim
t→∞

1

t

∫ t

0
Pab(t ′)dt ′ =

∑
n

|〈a|n〉|2|〈b|n〉|2. (4)

In this dynamical picture, T/D measures the stationary return
probability to an initial basis state, averaged over all the basis
states (initial conditions). The minimum value Tmin/D = 1/D

is reached if the dynamics connects any initial basis state to all
the other basis states, a limit of perfect “equilibration.” On the
other hand, the maximum value Tmax/D = 1 is reached when
H is diagonal in the preferential basis, so that the system does
not evolve at all if prepared at t = 0 in a basis state.

This quantity T was studied in detail in the case of a single
particle (tight-binding model) in a one-dimensional random
potential [7]. In the present work, we analyze the quantity T

for a simple many-body problem without disorder, the spin- 1
2

XXZ spin chain.

III. XXZ SPIN CHAIN

A. Hamiltonian

We consider the spin- 1
2 XXZ chain with open boundary

conditions, with a Hamiltonian given by

H =
N−1∑
i=1

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

)
. (5)

As is well known, the system has a gapped spectrum for
|�| > 1, with long-range order and spontaneous symmetry
breaking in the thermodynamic limit (“Ising” phase). On the
other hand, the system has a gapless spectrum and displays an
algebraic decay of spin-spin correlations at zero temperature
for |�| � 1 [the so-called Tomonaga-Luttinger liquid (TLL)
phase [15]]. Hereafter, we consider the “Ising configurations”
|a〉 = |↑↑↓ · · · 〉,| ↑↓↑ · · · 〉, · · · (eigenstates of all the Sz

i ) as
a natural basis for this problem. We use this basis to define the
IPR tn of the eigenstates.

B. Remarks on degeneracies

In the case of a degenerate multiplet of eigenstates
|n1〉, . . . ,|nd〉, the corresponding contribution to T (as de-
rived from the dynamical point of view [7]) should be∑

a (
∑d

α=1 |〈a|nα〉|2)
2
. For open boundary conditions and a

generic value of �, it turns out that the only degeneracies in the
spectrum of Eq. (5) are the twofold degeneracy (Sz

tot ↔ −Sz
tot)

of the eigenstates with a nonzero magnetization. But since
we focus here on the Sz

tot = 0 sector, we generically get
nondegenerate eigenstates which are either even or odd under
a global spin flip, as well as even or odd under the spatial
(left-right) symmetry.

We finally note that some additional degeneracies occur at
the free-fermion point (� = 0). For simplicity, we avoid this
special point when numerically computing the IPR.

IV. NUMERICAL RESULTS

A. The quantity T

The eigenstates of Eq. (5) were obtained using a full
numerical diagonalization for even sizes up to N = 20 in the
Sz

tot = 0 sector. The total Hilbert space dimension is therefore
D = (

N

N/2

) ∼ 2N
√

2/(πN ). Using the spin-flip parity and the
spatial parity with respect to the center of the chain, the total
space is decomposed into four blocks, each one being labeled
by two parities. The results for T are summarized in Fig. 1.
Note that T is independent of the sign of �. This follows from
the fact that changing the sign of � is equivalent to changing
the sign of the xy terms, and the latter can be undone by some
unitary transformation (π rotation about the z axis on every
second site) which only affects the sign of the wave functions
in the Ising basis, not their modulus. We can therefore restrict
ourselves to � � 0.

1. Gapped phase

We observe (top panel of Fig. 1) that, for sufficiently large
�, ln(T ) is approximately proportional to the number of sites,
i.e.,

ln(T ) ≈ a(�) N, (6)

with 0 < a(�) < ln(2). We can deduce that the average IPR
t̄ = T/D behaves as ln(t̄) ≈ −[ln(2) − a(�)]N . We conjec-
ture that these scalings hold in the whole gapped (massive)
region (� > 1).

At � = ∞, any Ising configuration (basis state) becomes an
eigenstate ofH, so that one may expect T = D and ln(T )/N ≈
ln(2) in that limit. This simple reasoning is, however, not
correct since many energy levels become degenerate in this
limit. Thus, as soon as � is not strictly infinite, the actual
eigenstates are nontrivial superpositions of several basis states
due to the effect of the S+

i S−
i+1 + H.c. terms (according to

degenerate perturbation theory). We indeed have ln(T )/N ≈
a(∞) for very large �, but the numerically obtained value
in this regime, a(∞) ≈ 0.25 (see Fig. 1), is significantly
smaller than ln(2). A very similar phenomenon has already
been observed in the much simpler situation of a tight-
binding particle in a random potential with binary disorder
[7], where the hybridization of degenerate molecular states
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FIG. 1. Quantity T [defined in Eq. (2)], plotted as a function
of the system size N (up to N = 20 spins) and of the anisotropy
parameter �. Different scalings are used: ln(T )/N in the top panel
and T/N in the middle. In the top panel, the crosses are the results
of a simple extrapolation to N = ∞ using ln(T ) ≈ a(�)N + b(�) +
c(�)/N and three different system sizes (N = 16, 18 and 20). The
bottom panel shows T as a function of N for three values of � in
the gapless phase. The lines are guides to the eye and show that T is
compatible with T ∼ N in this regime. The data are computed using
all the eigenstates in the Sz

tot = 0 sector.

has been shown to result in a nontrivial asymptotic return
probability Q ≈ 0.373 in the limit of an infinitely strong
disorder.

2. Gapless phase

In the gapless phase, T appears to scale approximately as
N (bottom panel in Fig. 1). With the present finite-size data,
it is, however, not possible to decide whether the exponent is
exactly 1. In any case, this implies that a(�) = 0 and that the
average IPR t̄ = T/D scales as ln(t̄) ≈ −N ln(2) in the whole
gapless phase.

The gapped and gapless phases are well known for having
different behaviors at zero temperature (correlation functions,
etc.). This sharp distinction between |�| � 1 and |�| > 1,
however, becomes a smooth crossover at finite temperature.
Since Eq. (2) involves a sum over all the eigenstates,
which is reminiscent of an infinite-temperature quantity, the

observation that T shows qualitatively distinct behavior in
both phases is unexpected and remarkable. As discussed in
Sec. IV C, it implies a qualitative change in the distribution of
the IPR of highly excited eigenstates.

3. Remarks concerning the free-fermion point

Finding the scaling of T is a nontrivial question even at the
free-fermion point (� = 0).

Let us, however, notice that the IPR t0 of the ground state
of a periodic chain of N sites (with N even) at � = 0 can be
computed exactly. It is, indeed, related to the partition function
of the Dyson-Gaudin gas at inverse temperature β = 4 [16],
as well as to the Shannon-Rényi entropy for the special value
n = 2 of the Rényi parameter [17]. The result reads

t0 = N !

(N/2)!(2N )N/2
(7)

and gives for large N

ln(t0) ≈ −N

2
+ ln(2)

2
. (8)

We are thus facing an explicit example of an eigenstate with
α = 1/2 (see below).

From another perspective, an approximate determination
of the quantity T at the free-fermion point can be obtained
by replacing the two matrices defining the Bogoliubov
transformation which diagonalizes the quadratic fermionic
Hamiltonian with two independent random orthogonal ma-
trices. Skipping every detail, let us mention that this approach
yields TSO(N) = 1

2 〈det(1 + �)2〉, where the brackets denote an
average over the orthogonal matrix � with the uniform (Haar)
measure on SO(N ). The known value of the above average
[18] leads to the simple expression

TSO(N) = N + 1. (9)

In spite of its approximate character, this result corroborates
the observed scaling T ∼ N in the gapless phase.

B. Distribution of the IPR of individual eigenstates

In order to understand the different scalings observed in the
previous section, it is instructive to analyze how the IPRs tn
are distributed over the energy spectrum. This information is
represented in Figs. 2 and 3 for different values of �. Figure 2
corresponds to a 12-site chain, and each individual eigenstate
is represented by a cross. Figure 3 corresponds to 18 spins,
and there the density of states is represented by a color scale.
For � close to zero it appears that tn is weakly correlated with
energy and that the IPRs of all the eigenstates are of the same
order of magnitude. For N = 16 and � = 0.1, tn range from
0.00022 to 0.0016, which corresponds to only a factor 7.

For a generic delocalized state, the IPR tn is expected to
scale as exp(−αnN ). For instance, Eq. (8) gives an example of
a state with α = 1/2. It therefore seems natural to introduce
the quantity

αn = − ln(tn)/N (10)

in order to compare the distributions of tn for systems
with different sizes. In the example above (� = 0.1),
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FIG. 2. IPR tn versus the eigenstate energy En for all the
eigenstates with Sz

tot = 0 in a 12-site chain. Top to bottom: � = 0.1,
1, and 3. The energy is weakly correlated with tn in the gapless phase.
On the other hand, for large �, the states at the edges of the spectrum
appear to be more localized (larger tn) than those in the middle of the
spectrum.

α goes from αmin = − ln(0.0016)/16 ≈ 0.402 to αmax =
− ln(0.00022)/16 ≈ 0.526.

In order to get an idea of the distribution of tn, we propose
sorting them in decreasing order and look for the number of
states D1/2 one has to include in the sum (starting from the
largest tn) in order to get one half of T :

D1/2∑
n=1

tn ≈ T

2
. (11)

We find D1/2/D ≈ 0.42 for � = 0.1 and 0.36 for � = 0.5 (see
Fig. 4). Importantly, these ratios are relatively stable when
varying the system size from N = 12 to N = 20. For this
reason we conjecture that the ratio D1/2/D remains finite in
the thermodynamic limit in the whole gapless regime.

The situation turns out to be qualitatively different for large
� (see the bottom panels of Figs. 2 and 3, corresponding to
� = 3). There, the eigenstates with extremal energies (close to
the ground state or to the highest excited state) are significantly
more “localized” (larger tn) than those living in the middle of

FIG. 3. Color plot of the density of states as a function of the IPR
tn and the eigenstate energy En for all the eigenstates with Sz

tot = 0 in
an 18-site chain. Top to bottom: � = 0.1, 1, and 3.
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FIG. 4. Proportion D1/2/D of states needed to get T/2 [see
Eq. (11)] as a function of � and for different system sizes N =
12,14,16,18, and 20. The calculation is restricted to Sz

tot = 0. This
proportion weakly depends on N for � < 1, whereas it decreases
significantly with N in the massive phase.
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the spectrum (where the density of states is maximal). For
N = 16 and � = 3, tn range from 0.0016 to 0.47, which now
corresponds to a factor 300. For this value of �, the proportion
of states required to get one half of T is D1/2/D = 0.19 for
N = 12, 0.14 for N = 16, and 0.10 for N = 20. (see Fig. 4).
This steady decrease suggests that the ratio D1/2/D vanishes
in the thermodynamic limit, so that an infinitesimal proportion
of all the eigenstates accounts for the major contribution to T .
We conjecture that this is the case in the whole massive phase.

C. Entropy function of the IPR

1. Generalities on entropy function

The number W (α,δ) of states with a value of α in the interval
[α,α + δ] is expected to scale exponentially with the system
size, in analogy with a conventional microcanonical density of
states. This leads us to define an entropy s(α), such that

W (α,δ) ∼ eNs(α). (12)

For sufficiently large N , the entropy defined in this way should
no longer depend on the “bin size” δ. As we will see, this
function is the proper way to describe the distribution of tn
in the thermodynamic limit. This entropy function can also
be viewed as a large deviation function and is similar to the
quantities used in multifractal analysis.

Some numerical results for this quantity are plotted in Fig. 5.
Although we observe significant finite-size effects, the picture
that emerges is the following:

(i) The entropy converges to a well-defined intensive
function s(α) on an interval [αmin,αmax] in the thermodynamic
limit. A precise determination of this support is, however, not
simple from the available data due to the small number of
eigenstates close to the extremal values of α.
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FIG. 5. Entropy s(α) [see Eq. (12)] for two system sizes and two
values of �. Here the bin size is 1/200. The dotted lines have slope
1 and are guides to the eye to locate the saddle point s ′(α0) = 1. In
the thermodynamic limit we expect the maximum of the entropy
to converge to s = ln(2). In addition, we conjecture that, in the
thermodynamic limit and in the gapless phase, this maximum is
attained at α0 = ln(2), where a cusp should develop (see text and
Fig. 6).

FIG. 6. Schematic representation of the entropy function, as
conjectured from the numerical analysis. Top: |�| > 1 (gapped
phase). Bottom: |�| < 1 (gapless phase).

(ii) The entropy s(α) has a maximum for some α = αtyp,
with αmin < αtyp < αmax, where these three quantities depend
on �. From a saddle-point evaluation of the total number of
states

D ∼
∫

eNs(α)dα ∼ 2N, (13)

we predict that the maximum s(αtyp) of the entropy converges
to ln(2) for sufficiently large systems. The numerical values
for N = 18 and N = 20 (see Fig. 5) are smaller than ln(2), but
they significantly increase with N . Moreover, αtyp corresponds
to the typical IPR: ttyp ∼ exp(−αtypN ).

The observations made previously on T can be related
to properties of s(α). The quantity T can be estimated by
evaluating the integral

T ∼
∫

eN(s(α)−α)dα (14)
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by means of a saddle-point approximation. The saddle point
α0 is defined as the solution of s ′(α0) = 1 and gives T ∼
exp{N [s(α0) − α0]}. In other words, a(�) [defined in Eq. (6)]
is given by a(�) = s(α0) − α0.

2. Gapless phase

The numerical data in Figs. 1 and 4 led us to conjecture
that a(�) = 0 and that D1/2/D reaches a finite limit in the
gapless phase. These observations can be translated as follows
in terms of s(α). By definition, to get one half of T , one needs
to sum over the D1/2 states with the highest tn (lowest αn). This
amounts to integrating over α only up to some value ᾱ. Within
the saddle-point approximation, it is easy to see that we have,
in fact, ᾱ = α0. This implies D1/2 ∼ exp[Ns(α0)]. The ratio
D1/2/D thus scales as exp{N [s(α0) − ln(2)]}. Thus, from the
fact that D1/2/D appears to be finite in the gapless phase, we
conclude that s(α0) = ln(2). Since ln(2) is the maximal value
for the entropy function, we also have α0 = αtyp. However,
by definition, s ′(α0) = 1. Thus, the entropy function has to
have a cusp at its maximum. The fact that αtyp = ln(2) also
implies that the IPR of typical eigenstates is close to that of
the maximally delocalized states. Finally, this also implies that
a(�) = 0, which is consistent with the scaling of T as a power
of N in the gapless phase, as already discussed. The scenario

we propose for the gapless phases is summarized in the bottom
panel of Fig. 6.

3. Gapped phase

Repeating the above arguments in the gapped phase, the
observed scaling for D1/2/D leads to s(α0) < ln(2). The
corresponding scenario for the entropy function is summarized
in the top panel of Fig. 6, with a strictly positive value for
a(�) = s(α0) − α0 accounting for the exponential growth of
T . It is interesting to note that, although T grows exponen-
tially with the system size, virtually all eigenstates have an
exponentially small IPR, that is, a delocalized character.

V. BEYOND THE XXZ CHAIN

In order to test the robustness of the results we have obtained
for the XXZ chain, we consider some perturbation of the model
by including second-neighbor interactions. The Hamiltonian
is now defined as follows:

H =
N−1∑
i=1

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

)

+J2

N−2∑
i=1

(
Sx

i Sx
i+2 + S

y

i S
y

i+2 + �Sz
i S

z
i+2

)
. (15)
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FIG. 7. Same as Fig. 1 for a spin chain with second-neighbor interactions [see Eq. (15)]. From left to right: J2 = 0.05,0.15, and 0.2. The
crosses in the top panels represent some extrapolations based on N = 16,18, and 20, as in Fig. 1.
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The parameter J2 allows one to tune the strength of the
perturbation.

For some detailed discussion about the rich phase diagram
of this model, we refer the reader to Refs. [19,20] and
references therein, but we simply focus here on the regime
0 � J2 � 0.24. There, the ground state turns out to be a
gapless TLL for � � 1, while it is a gapped state (Ising
phase) for � > 1. In other words, for sufficiently small J2,
the zero-temperature phase diagram is similar to the J2 = 0
case. Note, however, that the model is not integrable for
J2 �= 0.

In the TLL phase it is conventional to parametrize the long-
distance properties of the correlation functions by the so-called
Luttinger parameter K . Using a bosonization approach, one
can show that the staggered part of 〈S+

0 S−
r 〉 then behaves as

∼(−1)r r− 1
2K , and that of 〈Sz

0S
z
r 〉 behaves as ∼(−1)r r−2K [15].

K is a priori some nontrivial function of the microscopic
parameters of the model, here � and J2. However, the SU(2)
symmetry present at � = 1 forces the correlations to be
isotropic, so that, in fact, 2K = 1

2K
and K = 1

2 . Next, as
discussed by Haldane [21], the perturbation (umklapp terms)
that drives the transition from the TLL to the Ising phase is
marginal (in the renormalization-group sense) when K = 1

2 .
For this reason, the transition line between the TLL and the
Ising phase lies exactly at � = 1.

The numerical results concerning the scaling of T for J2 =
0.05,0.15, and 0.2 are displayed in Fig. 7. We first note that the
“perturbed” model displays an exponential growth of T [T ∼
exp(aN ) with a > 0] in the gapped phase, as for the J2 = 0
case. This is rather clear from the plots in the top panels and
from the associated extrapolation points (crosses).

The situation, however, seems different for � < 1. The
bottom panels of Fig. 7 indeed show that T reaches a maximum
and then slightly decreases for larger system sizes. Since
T cannot vanish (it is larger than 1 by construction), these
data strongly suggest that T is finite in the thermodynamic
limit when J2 > 0. How can this be reconciled with the
observation that T grows linearly with N when J2 = 0 and
|�| < 1 (Fig. 1) ? The first possibility is that the N → ∞
value of T is finite for the nonintegrable models but diverges
as J2 approaches zero. This interesting scenario would imply
a strong effect of the integrability of the model on the IPR
distribution. We note that the integrability has been shown in
Ref. [22] to have an impact on participation ratios, even though
that study focused on different basis choices.

An alternative, albeit less probable, possibility is that T

also remains finite in the gapless phase of the integrable model
(J2 = 0). Although this is not what the data of Fig. 1 (bottom
panel) suggest, one cannot exclude that T converges to a finite
limit for larger systems. If that were the case, studying larger
chains would be needed to observe some saturation of T for the
unperturbed XXZ chain. Still, performing a full diagonaliza-
tion on open chains beyond N = 20 sites would be numerically
quite challenging. Indeed, for 22 spins at Sz

tot = 0, the Hilbert
space dimension is larger than 1.7 × 105 in each of the four
symmetry sectors (using space inversion and global spin flip).

VI. CONCLUSIONS

We have investigated the IPRs (inverse participation ratios)
of individual energy eigenstates in a preferential Ising basis for
a spin-1/2 XXZ chain without disorder by means of an exact
diagonalization of the Hamiltonian on finite chains of length N

(up to 20), with open boundary conditions. We have considered
in particular the sum T of all tn, which has a dynamical
interpretation: it yields the stationary return probability to a
typical initial state of the preferential basis. Our main finding
is the observation of a qualitatively different behavior of the
latter quantities in the gapped and gapless phases. In the
gapped phase (|�| > 1), T grows exponentially with N , and
the entropy function s(α) describing the distribution of tn has a
smooth maximum. In the gapless phase (|�| < 1), T seems to
scale linearly with N , whereas the entropy function is singular
at its maximum. We have also investigated the effect of next-
nearest-neighbor interactions, which break the integrability of
the model. Although T still grows exponentially in the gapped
phase, it now appears to saturate to a constant value in the
gapless phase.

In some future work it would be very useful to make
some progress concerning the free-fermion point (� = 0) as
well as in the limit � → ∞. As we explained, as far as the
ground-state wave function(s) are concerned, these two limits
are rather simple. However, computing T for these models
appears quite challenging. More generally, we need some
deeper understanding of the qualitatively different scalings
observed in the gapped and gapless phases. From this point
of view, a Bethe ansatz formulation of the eigenstates seems a
promising route to explore, as well as some continuum-limit
approach to the problem in the gapless phase. The latter may
also shed light on the possible existence of universal terms in
the quantity T .
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